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Abstract

Drug-eluting systems are currently 
used in cardiac leads in order to reduce 
inflammation and fibrosis at the lead-tissue 
interface. Drug release from these drug 
delivery systems can be modulated by the 
manufacturing processes used to create 
the drug systems and assemble them onto 
the cardiac lead. In this study, scanning 
electron microscopy (SEM), atomic force 
microscopy (AFM), and Raman microscopy 
are employed to explore the material 
characteristics of a polydimethylsiloxane-
dexamethasone acetate (PDMS-DXA) drug 
collar used on cardiac leads when varying 
the strain during collar assembly on the lead. 

A novel test fixture was created in order 
to investigate these drug collars under 
simulated stresses. Measurements of the 
collar while fitted to a rod revealed micro-
cracks that are hypothesized to affect the 
drug release performance, resulting in 
increased drug elution. It was found that 
the strain that occurs during assembly of 
the collar onto the lead is a key factor in the 
formation of these micro-cracks. Results 
also suggest that cracks tend to form in 
areas of high drug particle density, and 
propagate between drug particles.

Introduction

When inserted into the endocardium 
for electrotherapy, cardiac leads may 
cause damage to the cardiac syncytium 
via inflammation and posterior fibrosis, 
resulting in increased threshold voltages[1, 2]. 
However, the addition of a drug component 
on the distal end of the lead has been 
shown to lessen the inflammation and 

significantly diminish the formation of a 
fibrous capsule surrounding the electrode, 
ultimately resulting in a reduction of 
the threshold voltage[3, 4]. This drug 
delivery system is typically composed 
of a two-phase system: for example, a 
continuous polydimethylsiloxane (PDMS) 
phase (a SiO2-reinforced matrix) and a 
dispersed phase consisting of the drug 
dexamethasone acetate (DXA)[5, 6]. 

The present work attempts to determine 
the effect that stretching (during assembly 
of a drug-containing component onto 
the lead) has on drug elution over time. 
The surface of the base of the drug 
collar is characterized by confocal Raman 
microscopy, atomic force microscopy 
(AFM), and scanning electron microscopy 
(SEM). These characterization tools may 
assist in understanding the mechanisms 
and pathways of drug elution for a drug 
collar in its realistic, stretched state, as it 
rests on the lead. Ultimately, developing 
knowledge of key factors that can 
influence drug elution time profiles, as 
well as the mechanisms of drug delivery, 
would be advantageous in guiding design 
of refined devices. 

Materials and methods

Samples were created by either 
combining micronized dexamethasone 
acetate with a two-part platinum-
catalyzed, silica (SiO2) reinforced PDMS 
elastomer to a 33 wt% drug loading 
followed by molding into drug collar 
components or molding the PDMS 
without drug incorporated into collar 
components. Each collar was assembled 
by stretching the component followed 
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by placement onto the rod feature 
of a test structure fabricated out of 
a polycarbonate material. The test 
structure, illustrated in Figure 1, 
was used to simulate placement 
onto a pacing lead and facilitate 
characterization of the drug collar in its 
stretched state.
 
Raman measurements were conducted 
on a WITec alpha 300R confocal Raman 
microscope (WITec Instrument Corp., 
Germany) equipped with a UHTS 300 
spectrometer, a DV401 CCD detector 
and a piezo-driven, feedback-controlled 
scan stage that provides 4 nm lateral 
and 0.5 nm vertical positioning 
accuracy. A 100× Nikon air objective 
with a numeric aperture of 0.90 was 
used. 

AFM was conducted with a Bruker 
Nanoscope V Multimode 8 (Santa 
Barbara, CA, USA), employing 
PeakForce QNM® (Quantitative 
Nanomechanical Mapping). The method 
provides simultaneous measurements 
of several characteristic sample 
metrics, which are herein referred to as 
height, tip-sample adhesive force, and 
“DMT Modulus” per the proprietary 
instrument software. Height refers to 
the Z scanner displacement to reach 
the PeakForce setpoint (quantified 
below), and thus to first approximation 
measures surface topography, but with 
possible higher-order effects due to 
differences of mechanical compliance 
(indentation) on rigid compared to soft 
surface locations. Tip-sample adhesive 
force is simply a measurement of 
the most negative deflection of the 

cantilever due to attractive forces 
sensed during retraction. 

The silicon tips employed (nominal 
radius of curvature 10 nm) were 
integrated with aluminum-backside-
coated silicon cantilevers (rectangular, 
nominal spring constant 1.75 N/m, 
Mikromasch USA). 

Results and Discussion

Two important aspects were revealed 
via SEM: drug particle aggregation and 
crack propagation. Figure 2a displays an 
SEM image of drug particles embedded 
in the PDMS broken up through 
cryo-sectioning. Unlike initial cryo-
fracturing attempts, drug aggregates 
have been sectioned through, revealing 
sub-micrometer drug particle sizes. 
Figure 2b shows a large drug particle, 
broken into several pieces, resting 
in the PDMS. These semi-crystalline 
aggregates also appear to influence 
crack propagation in the PDMS, as both 
of these images showed cracks leading 
away from the larger drug aggregates, 
or larger drug particles.
 
Supporting evidence for drug elution 
through these microscopic cracks 
was provided via confocal Raman 
microscopy. Images were obtained 
by combining the individual DXA 
and PDMS spectra. Confocal Raman 
microscopy reveals the distributions of 
the DXA drug and PDMS polymer in an 
un-stretched sample and a stretched 
collar, as illustrated in Figure 3. A total 
of 2500 spectra collected at 5 spectra 
per µm (e.g. 5 pixels/µm) were used 

to produce these images. The 
green pixels denote the PDMS 
polymer, while the red pixels 
correspond to the interspersed 
DXA drug. Yellow regions 
are areas of DXA and PDMS 

occupying the same pixel space. This 
is because the analysis volume (i.e., 
voxel) of each spectrum is ca. (0.30 
× 0.30 × 0.60) µm, which sometimes 
contained both DXA and PDMS. 
Different color scales are used in these 
images. In general, bright red or green 
color indicates stronger signals of the 
corresponding component, and vice 
versa. The dark regions indicate weak 
Raman signals of both components. 

The dark regions marked with the 
white arrows in Figure 3 have sizes 
substantially larger than the above-
discussed dark spots. We attribute 
these dark regions as voids in the 
samples. Comparing to the un-
stretched samples, more voids are 
present in the stretched sample (Figure 
3 (d)) and most of them are located 
around the drug particles, consistent 
with the AFM and SEM results. One 
such void is detected in the depth 
profile (Figure 3 (c)). The formation of 
more voids upon stretching implies a 
weak polymer-drug interaction.
 
AFM measurements were also 
performed on drug-containing collars. 
Figure 4 displays representative images 
of the surface of the drug collar, where 

Figure 1. Test structure with rod feature used for 
analysis of drug collar in stretched state, simulating 
drug collar assembled on pacing lead. SEM and AFM 
imaging were performed on the top surface of the 
drug collar.

Figure 2. SEM images of the surface of the drug collar 
following cryo-sectioning. (a) Demonstrates the cracks 
following drug particle locations. (b) Highlights a drug 
particle resting in the PDMS with cracks propagating away.

Strain-Induced Crack Formations Continued on Page 4
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the stiffness measurements have been 
overlaid on top of the height images 
in order to provide sharper contrast. 
Locations of (i) PDMS, (ii) SiO2, and (iii) 
DXA are denoted in Figure 4a. Because 
single values change for the “DMT 
Modulus” due to cantilever changes 
and the aforementioned reservations 
of using this contact model, stiffness 
ratios would be more appropriate to 
state for PDMS, SiO2, and DXA, which 

are 1:13:42, respectively. Unless the 
DXA resides on the surface of the 
PDMS, however, the relative stiffness 
of the DXA may be reduced. Therefore, 
morphology and particle size are more 
easily used to differentiate DXA and 
SiO2. 
 
In Figure 4b, the drug particles are 
clearly identified in orange, and appear 
to aggregate together in the upper left 
portion of the scan, inside a small crack. 
The voids, where the drug particles 
do not fully occupy the PDMS, are 
denoted by a green and blue coloring. 
This indicates a lack of contact between 
tip and sample due to the deep void the 
DXA resided in, reminiscent of the 
SEM image in Figure 2b. 

Beyond differentiation of the 
three components based on 
stiffness, AFM measurements 
further provided insight into crack 
propagation in the collars. Figure 5 
displays a 40 µm × 40 µm scan of 

the drug collar with a crack propagating 
across the surface. Figure 5a and Figure 
5b are the same scan, with height in 
(a) and adhesion in (b). Other scans 
revealed this same preponderance 
of drug along cracks, providing more 
evidence for crack propagation between 
drug particles. 

Conclusion

SEM, confocal Raman microscopy, and 
AFM provided insight into the physical 
perturbation of drug collars as a result 
of stretching that can influence elution. 
SEM revealed crack propagation stems 
from drug particles. Raman confirmed 
that particles visualized in SEM were 
DXA drug, and also confirmed crack 
formation initiates at drug particles. 
Raman microscopy further reveals 
a possible additional component 
present, which was assumed to be 
silica filler, further explored by AFM. 
AFM confirmed the presence of these 
small particles in range of 10 – 300 
nm, which is proposed to be the 
filler. AFM further demonstrated drug 
particle aggregation and allowed the 
differentiation of PDMS, DXA, and SiO2.
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Figure 3. Raman images of the PDMS drug 
collar: (a) depth profile of the un-stretched 
sample – the sample surface is at 1.5 µm 
from the top edge, (b) lateral cross section 
of the un-stretched sample obtained at the 
depth marked with a back arrow in (a), (c) 
depth profile of stretched collar – the sample 
surface is at 1.5 µm from the top edge, (d) 
lateral cross section of the stretched collar 
obtained at the depth marked with a black 
arrow in (c).Figure 4. AFM stiffness contrast overlaid on 

3D-rendered topography of the drug collar. Values 
of higher relative stiffness are brown/orange (DXA 
and SiO2), while those of lower stiffness (PDMS) 
are green/yellow. (a) Image identifying locations of 
(i) PDMS, (ii) SiO2, and (iii) DXA. (b) larger image.

Figure 5. AFM images containing a crack in the surface 
of the PDMS/drug matrix. (a) Height. (b) Adhesion. 
Brighter corresponds to greater values of pull-off force.
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Detection of viable microorganism 
growth is of great importance in 
several areas of microbiology. Microbial 
infection through contamination 
still poses a threat in areas such 
as the pharmaceutical, cosmetic 
and food industries. For this reason 
quality control is essential; tests are 
carried out to ensure microorganism 
contamination does not occur and that 
preservatives are functional. In clinical 
settings there has been an increase 
in the number of patients presenting 
with infections which show antibiotic 
resistance. Methods to date rely on 
conventional culturing and counting 
methods which are labour, material 
and time intensive. Currently in 
hospital laboratories, advanced tests 
performed to make an empirically 
established decision for treatment 
of infection require approximately 4 
days. Thus, a rapid and reliable growth 
detection mechanism would be highly 
advantageous.

High mass sensitivity1 accompanied 
by an increased use as biosensor in 
recent years indicates that cantilever 
arrays have the potential to be used for 
fast microorganism growth detection. 
When operated in dynamic mode the 
cantilever acts as a “mass balance” by 

actuation at its resonance 
frequency. Mass 
loading on the cantilever 
results in a decrease in 
resonance frequency. 
Arrays consisting of 
eight individual cantilever 
bars, each having a 
length, width and 
thickness of 500 µm, 
100 µm and 0.5-7 µm 
respectively are used in 
our studies. A pitch of 
250 µm separates each 
cantilever. The use of 
multiple sensors on one 
array allows for several 
tests to be performed in 
parallel (i.e. susceptibility 
testing using different 
concentrations of antibiotics) while also 
allowing for the use of in-situ reference 
sensors, which eliminate false positive 
or negative signals. 

Readout of the biological sensor uses 
the laser beam deflection method 
which is widely utilized in the field of 
atomic force microscopy. A schematic 
of the device is shown in Figure 1. 
A focused laser spot is deflected off 
the cantilever surface onto a position 
sensitive detector (PSD) which is 

employed to track the resonance 
frequency of the cantilevers in the 
array. Two automated translation stages 
are used to move the laser spot from 
sensor to sensor and along each 
sensor in the array. The cantilevers are 
actuated at their resonance frequencies 
by a piezo ceramic actuation stage. 
The device is fully automated via a 
LabVIEW software interface, which 
allows the resonance frequencies 
of the sensors in the array to be 
recorded in a time multiplexed fashion. 
Microorganism growth is dependent 
on the provision of suitable nutrition, 
water and temperature (30-37 °C). 
Water, via a humid environment (> 94 
%), and temperature are provided by 
the custom designed environmental 
chamber in which the device is housed. 
This allows accurate control of relative 
humidity (RH) and temperature levels 
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Figure 1. Schematic of cantilever sensor array device. A focused 
laser spot is deflected off the sensor’s surface onto a PSD which 
is used to track the resonance frequency of the cantilevers in 
the array. Two automated translation stages are used to move 
the laser spot from sensor to sensor and along each sensor 
in the array. A piezo ceramic is used to actuate the cantilevers 
at their resonance frequencies. The device is fully automated 
via LabVIEW. The device is housed in a custom designed 
environmental chamber.

Figure 2. Mechanism for growth detection. A cantilever inoculated with an Aspergillus 
spore is in equilibrium with its surrounding environment. As time passes growth via 
hypha filaments occurs which results in an uptake of water on the cantilever’s surface.



to within ±0.2 % and ±0.1°C respectively, which is essential 
for accurate growth detection measurements.

In preparation for growth detection measurements, the 
cantilevers are first cleaned using oxygen plasma. An 
epoxy-terminated silane monolayer is used to ensure 
covalent anchorage of thin agarose hydrogel layers on the 
cantilever surfaces. Functionalization of the cantilevers with 
agarose is achieved using dimension matched heated glass 
capillary tubes2. In order to form a nutritive layer on the 
cantilever surface the thin agarose hydrogel, which acts as 
a reservoir, is saturated with nutritional broth. Deposition of 
microbes on the cantilever can be performed using one of 
the following techniques; (i) ink jet printing3, (ii) micro needle 
(for fine positioning of individual microbes), or (iii) capillary 
functionalization. While in the device chamber, water 
exchange between the nutritive layer and the surrounding 
environment is in equilibrium. As nutrition is already on 
the surface of the cantilever, any mass uptake is due to 
adsorption of water caused by microorganism growth 
(Figure 2).

Using this hydrogel functionalised sensor the detection of 
Aspergillus niger growth (Figure 3)4, within 5 hours, and 
Escherichia coli growth5, within 1 hour, has been reported 
by means of a previous iteration of the device. Utilizing the 
current device, as described in this article, tests have been 
performed which illustrate the susceptibility of Aspergillus 
spores to different concentrations of fluconazole. Results 
were obtained significantly faster than when conventional 
methods are used. The micron precise movement of the 
laser spot along the cantilever enables the readout of higher 
modes of vibration and thus increases the sensitivity6 of the 
biological sensor. The positional effect of mass uptake on 
the cantilever when operated at higher resonance modes7 

allows us to determine the rate of growth of Aspergillus 
hypha along the cantilever surface providing information on 
single cell mechanics. Further development of this device, 
by replacement of the current optical read-out by a piezo-
resistive biosensor, will provide a user friendly handheld 
platform suitable for fast microorganism growth detection 
which will be applicable in several fields of microbiology.
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Synthetic polymers have been widely explored for use as 
tissue engineering scaffolds or smart medical devices.1 The 
development of intelligent biomaterials that closely mimic 
the structural organizations and multi-scale responsiveness 
of the natural extracellular matrices (ECM) has become 
critically important in biomedical engineering.2 Given 
the fact that most tissues in the body are subjected 
to mechanical stimuli, and cells within the tissue have 
sophisticated machinery that actively responds to the 
mechanical force, it is critical that this form of signaling 
be considered in the design of polymeric biomaterials.3 
An inevitable consequence of mechano-responsiveness 
is the tunability of materials’ properties in response to the 
applied forces. In this article, we summarize our effort 
in designing synthetic biomaterials that are mechano-
responsive. We emphasize the importance of incorporating 
mechano-responsive elements in synthetic matrices so 
that the materials’ properties and the cellular functions 
can be dynamically controlled by physiologically relevant 
mechanical stimuli. 

Poly(ε-caprolactone) (PCL)-based elastomers. Elastomers 
can undergo large and reversible deformations at relatively 
low stresses via force-induced alteration of polymer 
conformation from random coils to extended chains.4 
Therefore, elastomers are naturally mechano-responsive. 
We have synthesized and characterized PCL-based 
copolymers with flexible backbone and crosslinkable 
side chains. Specifically, ring opening polymerization of 
ε-caprolactone (CL) and 1,4,8-trioxaspiro-[4,6]-9-undecanone 
(TSU) using α-methoxy, ω-hydroxyl poly(ethylene glycol) 

(mPEG) as the initiator afforded a copolymer (ECT-CK) 
with randomly distributed cyclic ketals in the hydrophobic 
block. Quantitative side chain deacetalization revealed the 
reactive ketone moieties, through which acrylate groups 
were conjugated via an oxime reaction. UV-initiated radical 
polymerization of acrylated copolymer (ECT-AC, 1, Fig. 
1) in dichloromethane resulted in a crosslinked network 
(xECT-AC) containing stiff crystalline lamellae dispersed in 
a softer amorphous interstitial. Macroscopic and nanoscale 
mechanical characterizations showed a significant decrease 
in Young’s modulus when the bulky cyclic ketals were 
incorporated. While ECT-CK undergoes a plastic deformation 
with a distinct yield point and a cold drawing region, xECT-
AC exhibited a compliant, elastomeric deformation with 
a Young’s modulus of 0.5 MPa at ~37 °C. When properly 
processed, the crosslinked network exhibited shape 
memory behaviors with shape fixity and shape recovery 
values close to 1 and a shape recovery time of ~4 s at 
37°C.5 The crosslinkable polyester copolymers can be 
potentially used as tissue engineering scaffolds or injectable 

medical devices.

Elastin mimetic hybrid copolymers. Elastin 
is abundant in mechanically active soft tissues. 
It is composed largely of two types of short 
segments that alternate along the polypeptide 
chain: highly flexible hydrophobic segments, 
with many transient structures that can easily 
change their conformation when stretched; and 
alanine- and lysine-rich α-helical segments that 
form covalent cross-links between adjacent 
molecules.6 We have successfully synthesized 

elastin mimetic hybrid polymers (EMHPs) 
employing copper (I)-catalyzed alkyne-azide cycloaddition 
(CuAAC) reaction between telechelic, azide-terminated 
PEG and alkyne-functionalized peptide with a sequence 
of (AKAAAKA)2 (AK2) that is abundant in the crosslinking 
region of the natural elastin.7, 8 The resulting multiblock 
copolymers, [PEG-AK2]n (2a, Fig 1) have an estimated 
molecular weight of 34 kDa and are cytocompatible to 
the cultured cells. Covalent crosslinking of 2a through the 
lysine amines in peptide segments gave rise to elastomeric 
hydrogels with mechanical properties comparable to those 

Designing Mechano-Responsive Materials with Elastomeric 
Properties for Biomedical Applications

By Xiaowei Yang, Longxi Xiao and Xinqiao Jia
Department of Materials Science and Engineering, University of Delaware

Designing Mechano-Responsive Materials 
Continued on Page 87

Figure 1. Chemical structures of ECT-AC (1)5, [PEG-AK2]n (2a)7 and [PEG-AK2(RGD)]n (2b)8
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of the natural elastin.7 To foster integrin-mediated cell 
adhesion, RGD-containing peptide with a sequence of 
X(AKAAAKA)2XGGRGDSP was used in place of X-AK2-X 
(X=propargylglycine) for EMHP synthesis. The resultant 
copolymer, [PEG-AK2(RGD)]n (2b, Fig 1), when covalently 
crosslinked, facilitates integrin-mediated attachment 
and proliferation of neonatal foreskin fibroblasts.8 These 
mechanically responsive materials can be fabricated into 
porous scaffolds for the engineering of mechanically active 
tissues, such as the vocal fold, tendons and cardiovascular 
systems.

Mechano-responsive hydrogels. Mechano-responsive 
structural motifs are abundant in nature. Through the 
coordinated conformational changes over a range of 
mechanical forces, these motifs can ultimately produce 
changes at the biochemical level to effectively direct cellular 
behaviors.9-11 We have created a new type of hydrogel 
material using self-assembled block copolymer micelles 
(BCMs) as the dynamic building blocks combined with 
microscopic crosslinkers.12, 13 Block copolymer micelles 
were assembled from amphiphilic block copolymer 
of poly(n-butyl acrylate) (PnBA) and acrylate-modified 
poly(acrylic acid) (PAA) (3, Fig 2). Radical polymerization 
of acrylamide in the presence of micellar crosslinkers 
gave rise to elastomeric hydrogels (BCM-PAAm gels, Fig 
2) whose mechanical properties can be tuned by varying 
the BCM composition. Transmission electron microscopy 
imaging revealed that the relaxed BCM-PAAm gels contain 
perfectly spherical particles with an average diameter 
of 30±3 nm. When BCM-PAAm gels were stretched to 
60% and 200% strain, the spherical micelles became 
ellipsoidal with the long axis parallel to the stretch 
direction, having an aspect ratio of 1.26 ±0.13 and 1.53 
±0.23, respectively. TEM characterization of control gels 
devoid of BCMs showed a featureless background stain 
at 0 and 60% strain. A model hydrophobic drug, pyrene, 
loaded into the core of the BCMs prior to the formation of 
BCM-PAAm gels, was dynamically released in response 

to externally applied mechanical forces, through force-
induced reversible micelle deformation and the penetration 
of water molecules into the micelle core, leading to the 
weakening of hydrophobic association between pyrene 
and the micelle core.13 If pyrene is replaced by biologically 
active molecules, mechanical forces can be readily 
converted into biochemical cues to facilitate tissue repair 
and regeneration.
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Figure 2. Synthesis and characterization of BCM-crosslinked, mechano-responsive hydrogels12,13. BCMs were assembled from (PAA-g-HEA)-b-PnBA 
(3) and hydrogels were prepared by radical polymerization of acrylamide in the presence of crosslinkable BCMs.



Secondary Ion Mass Spectrometry (SIMS) is a proven 
analytical technique for many applications because of high 
sensitivity and depth resolution. The ability to locate and 
quantify impurities as a function of depth with an analysis 
method that uses an ion beam to remove material by 
sputtering has been very important for surface analysis.

Depth resolution is dependent on uniform erosion of the 
sample during ion bombardment. It has been known for 
some time that analysis of even single crystal silicon using 
O2+ bombardment can lead to formation of ripples that 
not only degrade depth resolution but result in a change in 
sputtering rate that complicates depth axis calibration.1,2 

Metals comprise two thirds of the elements and 
approximately 25% of the earth’s mass. Metals have many 
critical applications that can be aided by surface analysis. 
However, this class of materials is particularly susceptible to 
non-uniform sputtering. Metals are typically polycrystalline 
which means they are composed of many small crystals 
or grains. They also have grain boundaries and may have 
multiple phases which result in an inhomogeneous sample. 
Each grain has its own crystal orientation and sputtering 
into the grains with an ion beam will strike some grains in 
an aligned direction and some not aligned. For an aligned 
grain, the ion beam will penetrate further into the sample. 
As a result, a higher proportion of the energy of the incident 
ion will be imparted deeper in the sample which results in 
a lower sputtering rate compared with a grain not aligned 
where more of the incident ion energy is provided to the 
surface atoms. There is a corollary effect which explains 
the contrast observed when a Focused Ion Beam (FIB) is 
used to image a metal surface.3,4 The ions that strike aligned 
grains penetrate deeper and generate fewer secondary 
electrons. Ions that strike unaligned grains have shallower 
penetration and generate more secondary electrons and 
these grains appear brighter than aligned grains. Figure 
1 shows an example of secondary electron imaging of a 
chromium coated steel wire under Ga+ bombardment in an 
FIB instrument.4 The steel grains are clearly visible and the 
grain size difference with the smaller chromium atoms is 
evident.

The difference in sputtering rate between aligned and 
not aligned grains can be quite significant. The result is 
topography formation and Fig 2 illustrates the impact for a 
SIMS crater in a metal layer.2 The rough crater bottom will 
significantly degrade depth resolution. For some materials, 
the non-uniformity can be on the order of a micrometer for 
a crater that is only a few micrometers deep. Significant ion 
bombardment induced roughness can be measured with 
Scanning Electron Microscopy (SEM). If the sample can be 
viewed optically during sputtering, significant roughening 
will cause the crater region to become dark because the 
light used to view the sample is scattered. Roughening on a 
smaller scale may require measurement with Atomic Force 
Microscopy (AFM).

Topography formation can often be reduced by varying the 
angle of incidence, the beam energy, or the bombarding 
species. However, a method that has proven to reduce 
topography formation during sputtering is sample rotation. 
Even though metal grains sputter at different rates for 
different orientations, rotation of the sample during 
sputtering presents continually varying angles of the grain 
to the beam and the result is a uniform crater bottom. 
Sample rotation was first demonstrated for Auger Electron 
Spectroscopy (AES).5 Applications of sample rotation using 
SIMS were easiest to achieve for quadrupole instruments 
because the physical space in the analyzer and extraction 
region is not as confined as for magnetic sector instruments. 
Analysis of a 1µm thick aluminum film using sample rotation 
showed significant improvement in depth resolution for 
quadrupole6 and magnetic sector instruments.7 High speed 
rotation is not required and a rate on the order of 12 rev/min 
can be sufficient.

Numerous sample rotation examples can be found for SIMS 
analysis. An inter-laboratory study of a nickel/chromium 
multilayer structure with AES, XPS and SIMS analysis 
showed significant improvement in depth resolution with 
sample rotation.8 A similar result was obtained for a GaAs/
AlGaAs superlattice.9 AFM measurements that correlate 
removal of topography with analysis improvement have, 
for example, been documented for polycrystalline silicon10, 
low energy O2+ bombardment used for ultra-shallow 
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measurements11, and a ZnTe/GaAs study where the 
roughening originated at the interface.12

A limited number of magnetic sector SIMS instruments have 
sample rotation capability, but SIMS instruments with Time 
of Flight analyzers (TOF-SIMS) have more open geometry 
than the magnetic sectors. The utility of sample rotation 
has been demonstrated on a TOF-SIMS instrument for 
cluster beams such as C6013 and the effect investigated with 
molecular dynamics simulations.14

Analysis of metals using SIMS has some complicating 
factors, particularly as a result of topography formation 
during ion bombardment. However, the use of sample 
rotation has proved to be an effective method to improve the 
depth resolution for analysis of this class of materials.
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Figure 1. FIB secondary electron image of 
chromium coated steel wire showing contrast 
due to grain orientation. From FEI website4

Figure 2. Illustration of topography formation in SIMS 
crater. From Wilson, Stevie, Magee, 19892 



The US FDA issued a few guidance documents just as 
2012 ended, and has published a list of additional guidance 
documents it plans to issue in 2013.

Perhaps the most relevant of the recent trio of final guidance 
documents released on New Year’s Eve is for electronic 
copies (eCopies) of medical device submissions. 

eCopies are now required, not recommended, for 510(k)s, 
including third-party 510(k)s; De novo petitions; PMAs; PDPs; 
IDEs, except those for Compassionate or Emergency IDEs; 
HDEs; and Pre-Submission materials. eCopies are voluntary 
for MAFs, 513(g)s, and CLIA X Files. 

(Sorry for the alphabet soup. Click here for a glossary.) 

When required, at least one eCopy must accompany at least 
one paper copy of the signed cover letter and the complete 
paper submission in order for the submission to be accepted. 
The eCopy may be submitted on a compact disc, digital video 
disc, or flash drive. The eCopy must include all of the required 
information for FDA review, whereas the paper copy can 
include a placeholder cross-referencing the location of certain 
information in the eCopy. The cover letter must contain the 
eCopy statement described in Attachment 1 of the guidance 
and describe any differences between the paper version and 
the eCopy. The guidance outlines the format and naming 
requirements for the .pdf files that are to be submitted. The 
FDA offers a free “eSubmitter-eCopies” tool (which can be 
found by clicking here) at which it “strongly encourage[s] 
applicants to use.” 

The FDA will not accept any of the submissions that require 
eCopies that do not include at least one eCopy in the 
required format. Along the same lines, the final version of 
the FDA’s guidance “Refuse to Accept Policy for 510(k)s,” 
also issued on 31 December, explains the procedures and 
criteria FDA uses in “assessing whether a 510(k) submission 
meets a minimum threshold of acceptability and should be 
accepted for substantive review.” 

See here. That’s pretty self explanatory. Assure that the 
“recommendations” of this guidance document are met, 
or you may find that you have to rewrite and resubmit your 
510(k) and incur a significant delay in device clearance. 
Likewise, if submitting a PMA, assure that the 
recommendations of the 31-December-issued guidance 
“Acceptance and Filing Reviews for Premarket Approval 

Applications (PMAs)” are also addressed to minimize 
delays in processing your PMA. 

By way of New Year’s resolutions, the FDA published its list 
of the guidance documents it intends to issue in FY 2013. 
The list can be found here. The most anticipated of these, 
from the perspective of a medical device innovator, are the 
following final versions promised:

•	Premarket Notification [510(k)] Submissions for Medical 
Devices that Include Antimicrobial Agents

•	 Investigational Device Exemptions (IDE) for Early 
Feasibility Medical Device Clinical Studies, Including 
Certain First in Human (FIH) Studies

•	Design Considerations for Pivotal Clinical Investigations 
for Medical Devices

•	De novo Classification Process (Evaluation of Automatic 
Class III Designation)

•	The 510(k) Program: Evaluating Substantial Equivalence 
in Premarket Notifications

•	The Pre-Submission Program and Meetings with FDA 
Staff

•	Mobile Medical Applications
•	 In Vitro Companion Diagnostic Devices

Interestingly, it has been my experience that the FDA is, 
for the most part, following the recommendations in the 
draft guidance on Pre-Submission meetings. Yet, the 
provisions of the proposed revisions to the De novo 
guidance are not yet being implemented, even though the 
possibility of industry disapproval of the proposed revisions, 
which represent a marked improvement over the current 
procedures, is slim to non-existent. 

The most significant change proposed in the Pre-Sub 
guidance is that the FDA will commit to providing a written 
response to Pre-Sub materials within 90 days of their 
submission. This represents an improvement over the 
current practice of providing the minutes of the non-binding 
meetings for FDA approval. The major proposed change 
to the de novo process is that a pre de novo submission 
(PDS) of materials can be provided for FDA assessment 
of suitability prior to submission of the 510(k). If the FDA 
finds the materials presented in the PDS suitable for 
review, the de novo petition and 510(k) could be submitted 
simultaneously with proposed reductions in overall review 
times.

May all your submissions be reviewed in record time in 2013!

FDA Issues New Guidance Documents and Resolves to Issue 
Many More in 2013

By Phil Triolo, SurFACTS Regulatory Editor

http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM313794.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM313794.pdf
http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/BudgetReports/UCM153852.pdf
http://www.fda.gov/ForIndustry/FDAeSubmitter/ucm317334.htm
http://www.fda.gov/ForIndustry/FDAeSubmitter/ucm317334.htm
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM315014.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM313368.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM313368.pdf
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/MDUFAIII/ucm321367.htm
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM311176.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM273903.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM273903.pdf
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